Different c-Jun N-terminal kinases (JNKs) are activated by a plethora of signals and phosphorylate substrates such as c-Jun, which is required for efficient cell cycle progression. Although JNK1 and JNK2 were shown to differentially regulate fibroblast proliferation, the underlying mechanistic basis remains unclear. We found that Jnk2-/- fibroblasts exit G1 and enter S phase earlier than wild-type counterparts, while Jnk1-/- cells show the inverse phenotype. Moreover, Jnk2-/- erythroblasts also exhibit a proliferative advantage. JNK2 deficiency results in elevated c-Jun phosphorylation and stability, whereas the absence of JNK1 reduces c-Jun phosphorylation and stability. Re-expression of JNK2 in Jnk2-/- cells reverses the JNK2 null phenotype, whereas ectopic expression of JNK1 augments it. JNK2 is preferentially bound to c-Jun in unstimulated cells, thereby contributing to c-Jun degradation. In contrast, JNK1 becomes the major c-Jun interacting kinase after cell stimulation. These data provide mechanistic insights into the distinct roles of different JNK isoforms.
Copyright 2004 Cell Press