Factors that control differentiation of presynaptic and postsynaptic elements into excitatory or inhibitory synapses are poorly defined. Here we show that the postsynaptic density (PSD) proteins PSD-95 and neuroligin-1 (NLG) are critical for dictating the ratio of excitatory-to-inhibitory synaptic contacts. Exogenous NLG increased both excitatory and inhibitory presynaptic contacts and the frequency of miniature excitatory and inhibitory synaptic currents. In contrast, PSD-95 overexpression enhanced excitatory synapse size and miniature frequency, but reduced the number of inhibitory synaptic contacts. Introduction of PSD-95 with NLG augmented synaptic clustering of NLG and abolished NLG effects on inhibitory synapses. Interfering with endogenous PSD-95 expression alone was sufficient to reduce the ratio of excitatory-to-inhibitory synapses. These findings elucidate a mechanism by which the amounts of specific elements critical for synapse formation control the ratio of excitatory-to-inhibitory synaptic input.