The ligand TMPA (tris(2-pyridylmethyl)amine) and its copper complexes have played a prominent role in recent (bio)inorganic chemistry studies; the copper(I) complex [CuI(TMPA)(CH3CN)]+ possesses an extensive dioxygen reactivity, and it is also known to effect the reductive dechlorination of substrates such as dichloromethane and benzyl and allyl chlorides. In this report, we describe a set of new analogues of TMPA, ligand 6TMPAOH, binucleating Iso-DO, and trinucleating SYMM. Copper(I) complexes with these ligands and a previously described binucleating ligand DO react with chloroform, resulting in reductive dechlorination and production of [CuIIx(L)Clx]x+ (x = 1, 2, or 3). X-ray crystal structures of [CuII(6TMPAOH)Cl]PF6, [CuII2(Iso-DO)Cl2](PF6)2, [CuII2(DO)Cl2](PF6)2, and [Cu3(SYMM)Cl3](PF6)3 are presented, and the compounds are also characterized by UV-vis and EPR spectroscopies as well as cyclic voltammetry. The steric influence of a pyridyl 6-substituent (in the complexes with 6TMPAOH, Iso-DO, and SYMM) on the solid state and solution structures and redox potentials are compared and contrasted to those chlorocopper(II) complexes with a pyridyl 5'-substituent (in [CuII2(DO)Cl2](PF6)2 and in [CuII(TMPA)Cl]+). Some insights into the reductive dechlorination process have been obtained by using 2H NMR spectroscopy in following the reaction of [Cu2(Iso-DO)(CH3CN)2](PF6)2 with CDCl3, in the presence or absence of a radical trap, 2,4-di-tert-butylphenol.
Copyright 2004 American Chemical Society