Proteasome-dependent proteolysis is essential for a number of key cellular processes and requires a sophisticated biogenesis pathway to function. Here, we have arrested the assembly process in its dynamic progression at the short-lived 16S state. Structural analysis of the 16S proteasome precursor intermediates by electron microscopy, and single particle analysis reveals major conformational changes in the structure of the beta-ring in comparison with one-half of the 20S proteasome. The individual beta-subunits in the 16S precursor complex rotate with respect to their positions in the x-ray crystallographic structure of the fully assembled 20S. This rearrangement results in a movement of the catalytic residue threonine-1 from the protected location in 16S precursor complexes to a more exposed position in the 20S structure. Thereby, our findings provide a molecular explanation for the structural rearrangements necessary for the dimerization of two 16S precursor complexes and the subsequent final maturation to active 20S proteasomes.