The slow-growing nature of Mycobacterium tuberculosis complex hinders the improvement of turnaround time for phenotypic drug susceptibility testing. We designed a set of molecular beacons for the detection of isoniazid and rifampin resistance mutations in M. tuberculosis complex organisms from cultures or from N-acetyl-l-cysteine-NaOH-treated, smear-positive specimens. The performance of the molecular beacons was characterized by studying a total of 196 clinical isolates (127 drug-resistant isolates and 69 drug-susceptible isolates). For detection of isoniazid resistance, the sensitivity and specificity of the assay were 82.7 and 100%, and the positive predictive value (PPV) and negative predictive value (NPV) at a resistance prevalence of 10% were 100 and 98.11%, respectively. For detection of rifampin resistance, the sensitivity and specificity of the assay were 97.5 and 100%, and the PPV and NPV at a resistance prevalence of 2.0% were 100 and 99.95%, respectively.