Claudins, and particularly claudin-2, are important regulatory components of tight junction permeability. A better understanding of the involvement of claudin-2 in intestinal barrier functions requires the characterization of its distribution and regulation in the intestine. Interestingly, the claudin-2 gene promoter harbors a number of similarities to that of sucrase-isomaltase, a marker of enterocyte differentiation. We thus investigated the expression of claudin-2 in relation to the transcription factors CDX2, HNF-1alpha, and GATA-4 in the human intestine. The characterization of claudin-2 and the expression of the above transcription factors were performed by immunofluorescence, Western blot, and RT-PCR in the developing human intestinal epithelium. The functional role of CDX2, HNF-1alpha, and GATA-4 on claudin-2 regulation was also examined by ectopic expression studies in intestinal cell models. Claudin-2 was detected in both crypt and villus cells of the small intestine but restricted to undifferentiated crypt cells in the colon. CDX2 and HNF-1alpha were expressed along the entire intestine whereas GATA-4 was undetectable in the colon. Accordingly, in the colonic Caco-2 cell model, claudin-2 was found to be present only in undifferentiated cells. Like in the colonic epithelium, GATA-4 was found to be also lacking in Caco-2 cells while CDX2 and HNF-1alpha were present at significant levels. Cotransfection experiments showed that the claudin-2 promoter was activated by CDX2, HNF-1alpha, and GATA-4 in a cooperative manner. Furthermore, forced GATA-4 expression in Caco-2 cells enhances maintenance of claudin-2 expression during differentiation. These observations suggest that optimal claudin-2 expression in the gut relies on the presence of GATA-4, suggesting a role for this factor in intestinal regionalization.
2004 Wiley-Liss, Inc.