Recent evidence from genetic experiments in yeast and from studies using guanosine triphosphate (GTP) analogues in mammalian cells suggests a key role for low-molecular-mass GTP-binding proteins (LMM-GBPs) (Mr 19 to 28 kD) in processes of intracellular vesicular sorting and secretion. Assembly and exocytosis of the lamellar body (LB), the secretory organelle of the pulmonary alveolar type 2 pneumocyte, may be regulated by LMM-GBPs. We used [alpha-32P]GTP binding to Western blotted proteins, ultraviolet crosslinking of [alpha-32P]GTP to membrane proteins, immunoblotting with specific antisera, and botulinum exoenzyme C3-catalyzed ADP ribosylation to detect LMM-GBPs in LB. With the first two techniques, we have identified six LMM-GBPs of approximately 27, 25.5, 24.5, 23, 22, and 21 kD that are enriched in a highly purified LB fraction compared with type 2 pneumocyte homogenate, crude membranes, and cytosol. Further characterization of the LB LMM-GBPs by immunoblotting revealed that ras p21 is greatly enriched in the LB fraction compared with other type 2 pneumocyte fractions. In addition, botulinum exoenzyme C3 catalyzed the ADP ribosylation of 20- to 21-kD proteins that were similarly enriched in the LB fraction. In contrast, a monospecific antibody to ADP-ribosylation factor reacted with a 19-kD protein only in the type 2 pneumocyte homogenate and cytosol fractions. Monospecific antibodies to yeast Sec4 protein and to rab 3A did not react with any type 2 pneumocyte proteins. The LMM-GBPs specifically associated with LB may participate in intracellular events required for surfactant packaging and secretion.