Most molecules involved in the recognition and elimination of pathogens by the immune system are glycoproteins. Oligosaccharides attached to glycoproteins initiate biological functions through mechanisms that involve multiple interactions of the monosaccharide residues with receptors. For example, calreticulin, a quality-control lectin-like chaperone, interacts with glucosylated mannose glycans presented by empty major histocompatibility complex (MHC) class I molecules, retaining them in the endoplasmic reticulum (ER) until antigenic peptide is loaded. Clusters of specific IgG glycoforms, present in increased amounts in rheumatoid arthritis, bind mannose-binding lectin (MBL), providing a potential route to inflammation through activation of the complement pathway. Secretory IgA glycans bind gut bacteria, and an unusual cluster of mannose residues on gp120, the surface coat protein of the HIV virus, is recognized by the novel 'domain-swapped' IgG 2G12 serum antibody.