Stimulatory heterotrimeric G protein (Gs) transduces signals from various cell-surface receptors to adenylyl cyclases, which generate cAMP. The alpha subunit of Gs (Gsalpha) is encoded by GNAS (Gnas in mice), and heterozygous Gsalpha inactivating mutations lead to Albright hereditary osteodystrophy. The in vivo role of Gsalpha in skeletogenesis is largely unknown, because of early embryonic lethality of mice with disruption of Gnas exon 2 (Gnas(E2-/E2-)) and the absence of easily detectable phenotypes in growth plate chondrocytes of heterozygous mutant mice (Gnas(+/E2-)). We generated chimeric mice containing wild-type cells and either Gnas(E2-/E2-) or Gnas(+/E2-) cells. Gnas(E2-/E2-) chondrocytes phenocopied PTH/PTHrP receptor (PPR)(-/-) cells by prematurely undergoing hypertrophy. Introduction of a transgene expressing Gsalpha, one of several gene products that include Gnas exon 2, into Gnas(E2-/E2-) cells prevented premature hypertrophy. Gsalpha mRNA expression detected by real-time RT-PCR analysis was reduced to approximately half that of the wild-type in both paternal and maternal Gnas(+/E2-) growth plate chondrocytes, indicating biallelic expression of Gsalpha in these cells. Hypertrophy of Gnas(+/E2-) chondrocytes was modestly but significantly premature in chimeric growth plates of mice containing wild-type and Gnas(+/E2-) cells. These data suggest that Gsalpha is the primary mediator of the actions of PPR in growth plate chondrocytes and that there is haploinsufficiency of Gsalpha signaling in Gnas(+/E2-) chondrocytes.