Spinal muscular atrophy (SMA) is a common autosomal recessive disease. SMA is linked to the 5q13 locus in 95% of patients, and in at least 98% of them, the SMN1 homozygous deletion is found. Compound heterozygous patients, who have an SMN1 deletion associated with a subtle mutation, appear undeleted with the common molecular diagnostic test that detects only the homozygous absence of SMN1. In these patients, mutation screening in SMN1 is hampered by the presence of several copies of the highly homologous SMN2 gene. Here, we present a rapid and reliable strategy for detecting SMN mutations using long-range PCR, which avoids cloning and cDNA analysis. Using this method, we found 10 mutations, including five mutations never reported previously and five recurrent mutations; some of them are probably population-specific. Marker analysis of the 5q13 locus in these mutations showed common haplotypes, supporting the hypothesis of a common ancestor rather than a hot spot sequence. We also evaluate the suitability of automated SSCA and DHPLC for mutation scanning.
Copyright 2004 Wiley-Liss, Inc.