The proliferation of vascular smooth muscle cells (VSMCs) and alterations of their phenotype are implicated in the pathogenesis of atherosclerosis. Arterial wall injury induces the expression of proto-oncogenes, leading to the proliferation of VSMCs. In particular, c-Myc and c-Myb play a central role in cell cycle progression and are essential for VSMC replication. The protooncogene Pim-1 cooperates with c-Myc and enhances the transcriptional activity of c-Myb in hematopoietic cells, suggesting that Pim-1 is involved in cell cycle regulation. The aim of this study was to examine the possible involvement of Pim-1 in VSMC proliferation. Pim-1 was substantially induced in neointimal VSMCs of balloon-injured rat carotid arteries, and in vivo infection with a dominant negative Pim-1-expressing adenovirus (Ad-DN-Pim-1) markedly suppressed neointima formation and cell cycle progression in the balloon-injured arteries. In cultured VSMCs, treatment with serum or H(2)O(2) induced Pim-1 expression, and H(2)O(2)- or serum-stimulated cell cycle progression and DNA synthesis were almost completely inhibited by DN-Pim-1 overexpression. Furthermore, we performed immunohisto-chemical staining for Pim-1 in human thoracic aortas and coronary arteries obtained from six individuals at autopsy and found that Pim-1-positive cells are observed predominantly in the thickened intima of the aortas and coronary arteries. To the best of our knowledge, this is the first report showing Pim-1 expression in rodent and human arterial walls. To summarize, Pim-1 expression was observed in the neointima of balloon-injured rat carotid arteries and in human thoracic aortas and coronary arteries showing intimal thickening, and the specific inhibition of Pim-1 function markedly suppressed neointima formation after balloon injury and the proliferation of cultured VSMCs, suggesting that Pim-1 plays a role in VSMC proliferation.