The aim of current study is to investigate the effect of systemic administration of lipopolysaccharide (LPS) on the temporal pattern of cortical nuclear factor kappa B (NF-kappaB) binding activity, inflammatory response and secondary damage in the injured brain following traumatic brain injury (TBI). Right parietal cortical contusion in rats was made by using weight-dropping method. The rats were randomly divided into sham, LPS, TBI and TBI-LPS groups, with LPS injected intraperitoneally. NF-kappaB binding activity, cytokines, intercellular adhesion molecule-1 (ICAM-1) and brain damage were detected by electrophoretic mobility shift assay (EMSA), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labeling (TUNEL) apoptosis, respectively. The results showed that systemic administration of LPS following TBI could induce an immediate, strong and persistent upregulation of NF-kappaB, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and ICAM-1 in the area surrounding the injured brain. As compared with rats of sham, LPS and TBI groups, NF-kappaB binding activity, TNF-alpha and IL-6 were significantly upregulated in the surrounding cortex of injured site as early as 3 h postinjury when challenged with LPS, kept at high level up to 7-days postinjury. ICAM-1-positive vessels and apoptotic TUNEL-positive cells in the injured brain were also significantly increased in TBI-LPS rats. It was concluded that inflammatory response and secondary brain damage occurred in the injured brain could be highly exacerbated by endotoxemia.