Isolated transcription complexes contain a protein kinase that phosphorylates the heptapeptide repeats of the carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) large subunit in an apparently promoter-dependent manner. We now show that the essential features of this reaction can be reproduced in a reconstituted system containing three macromolecular components: a fusion protein consisting of the CTD of RNAP II fused to a heterologous DNA-binding domain, an activating DNA fragment containing the recognition sequence for the fusion protein, and a protein kinase that binds nonspecifically to DNA. This kinase closely resembles a previously known DNA-dependent protein kinase. Evidently, the association of the CTD with DNA provides a key signal for phosphorylation. There appears to be no absolute requirement for specific contacts with other DNA-bound transcription factors.