Background: Lipid mediators play an important pathophysiologic role in atopic asthmatic children, but their role in the airways of atopic nonasthmatic children is unknown.
Objective: We sought (1) to measure leukotriene (LT) E 4 , LTB 4 , 8-isoprostane, prostaglandin E 2 , and thromboxane B 2 concentrations in exhaled breath condensate in atopic asthmatic and atopic nonasthmatic children; (2) to measure exhaled nitric oxide (NO) as an independent marker of airway inflammation; and (3) to study the effect of inhaled corticosteroids on exhaled eicosanoids.
Methods: Twenty healthy children, 20 atopic nonasthmatic children, 30 steroid-naive atopic asthmatic children, and 25 atopic asthmatic children receiving inhaled corticosteroids were included in a cross-sectional study. An open-label study with inhaled fluticasone (100 microg twice a day for 4 weeks) was undertaken in 14 steroid-naive atopic asthmatic children.
Results: Compared with control subjects, exhaled LTE 4 ( P <.001), LTB 4 ( P <.001), and 8-isoprostane ( P <.001) levels were increased in both steroid-naive and steroid-treated atopic asthmatic children but not in atopic nonasthmatic children (LTE 4 , P=.14; LTB 4 , P=.23; and 8-isoprostane, P=.52). Exhaled NO levels were increased in steroid-naive atopic asthmatic children ( P <.001) and, to a lesser extent, in atopic nonasthmatic children ( P <.01). Inhaled fluticasone reduced exhaled NO (53%, P <.0001) and, to a lesser extent, LTE 4 (18%, P <.01) levels but not LTB 4 , prostaglandin E 2 , or 8-isoprostane levels in steroid-naive asthmatic children. Conclusions Exhaled LTE 4 , LTB 4 , and 8-isoprostane levels are increased in atopic asthmatic children but not in atopic nonasthmatic children. In contrast to exhaled NO, these markers seem to be relatively resistant to inhaled corticosteroids.