Myeloperoxidase genotype, fruit and vegetable consumption, and breast cancer risk

Cancer Res. 2004 Oct 15;64(20):7634-9. doi: 10.1158/0008-5472.CAN-04-1843.

Abstract

Myeloperoxidase (MPO), an antimicrobial enzyme in the breast, generates reactive oxygen species (ROS) endogenously. An MPO G463A polymorphism exists in the promoter region, with the variant A allele conferring lower transcription activity than the common G allele. Because oxidative stress may play a role in breast carcinogenesis, we evaluated MPO genotypes in relation to breast cancer risk among 1,011 cases and 1,067 controls from the Long Island Breast Cancer Study Project (1996-1997). We also assessed the potential modifying effects of dietary antioxidants and hormonally related risk factors on these relationships. Women over 20 years with incident breast cancer who were residents of Nassau and Suffolk Counties, NY, were identified as potential cases. Population-based controls were frequency matched by 5-year age groups. Genotyping was performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) technology, and suspected breast cancer risk factors and usual dietary intake were assessed during an in-person interview. Unconditional logistic regression was used to estimate odds ratios and 95% confidence intervals. Having at least one A allele was associated with an overall 13% reduction in breast cancer risk. When consumption of fruits and vegetables and specific dietary antioxidants were dichotomized at the median, inverse associations with either GA or AA genotypes were most pronounced among women who consumed higher amounts of total fruits and vegetables (odds ratio, 0.75; 95% confidence interval, 0.58-0.97); this association was not noted among the low-consumption group (P for interaction = 0.04). Relationships were strongest among premenopausal women. Results from this first study of MPO genotypes and breast cancer risk indicate that MPO variants, related to reduced generation of ROS, are associated with decreased breast cancer risk, and emphasize the importance of fruit and vegetable consumption in reduction of breast cancer risk.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Alleles
  • Breast Neoplasms / enzymology*
  • Breast Neoplasms / etiology*
  • Breast Neoplasms / genetics
  • Case-Control Studies
  • Cocarcinogenesis
  • Diet*
  • Female
  • Fruit
  • Genetic Predisposition to Disease
  • Genotype
  • Humans
  • Middle Aged
  • Peroxidase / genetics*
  • Polymorphism, Genetic
  • Risk Factors
  • Vegetables

Substances

  • Peroxidase