Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism

Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1252-6. doi: 10.1152/ajpheart.00207.2004. Epub 2004 Oct 21.

Abstract

Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Coronary Circulation / physiology
  • Ischemic Preconditioning, Myocardial*
  • Male
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / physiopathology
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / physiopathology*
  • Potassium Channels / physiology*
  • Rats
  • Rats, Wistar
  • Ventricular Function, Left / physiology
  • Ventricular Pressure / physiology

Substances

  • Potassium Channels
  • Adenosine Triphosphate