Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction

Magn Reson Med. 2004 Nov;52(5):1156-66. doi: 10.1002/mrm.20261.

Abstract

Echo-planar imaging (EPI) is an ultrafast magnetic resonance (MR) imaging technique prone to geometric distortions. Various correction techniques have been developed to remedy these distortions. Here improvements of the point spread function (PSF) mapping approach are presented, which enable reliable and fully automated distortion correction of echo-planar images at high field strengths. The novel method is fully compatible with EPI acquisitions using parallel imaging. The applicability of parallel imaging to further accelerate PSF acquisition is shown. The possibility of collecting PSF data sets with total acceleration factors higher than the number of coil elements is demonstrated. Additionally, a new approach to visualize and interpret distortions in the context of various imaging and reconstruction methods based on the PSF is proposed. The reliable performance of the PSF mapping technique is demonstrated on phantom and volunteer scans at field strengths of up to 4 T.

MeSH terms

  • Artifacts
  • Brain / anatomy & histology
  • Echo-Planar Imaging / methods*
  • Humans
  • Image Processing, Computer-Assisted
  • Models, Theoretical