Studies demonstrated that cocaine-induced immunosuppression is mediated by metabolites of cocaine. Although SKF 525-A inhibited cocaine N-demethylation in liver S9 fractions isolated from female B6C3F1 mice, our study showed that pretreatment of mice with SKF 525-A potentiated cocaine-induced suppression of the antibody response to sheep red blood cells. An increase in formaldehyde generation was subsequently shown following incubation of cocaine with the S9 fractions prepared from SKF 525-A-treated mice, indicating the possibility of cytochrome P-450 (CYP) induction. Therefore, the inductive effects of SKF 525-A on CYP enzyme activities and proteins were investigated in female B6C3F1 mice to elucidate the potentiation of cocaine-induced immunosuppression by SKF 525-A. When SKF 525-A was administered at 10, 20, or 40 mg/kg/d intraperitoneally for 7 consecutive days, both ethoxyresorufin O-deethylase and pentoxyresorufin O-dealkylase activities were induced dose-dependently. Furthermore, the induction of enzymatic activity was time dependent. Meanwhile, when the type of isozyme induced by SKF 525-A was analyzed by Western immunoblotting with monospecific anti-CYP 1A and anti-CYP 2B antibodies, only the CYP 2B appeared to be induced. From in vitro inhibition studies with monoclonal antibodies, it was confirmed that the induced activity of ethoxyresorufin O-deethylase by SKF 525-A was due to increased levels of CYP 2B proteins. Our present results provide an explanation for the potentiation of cocaine-induced immunosuppression by repeated exposure to SKF 525-A. Our results also indicate that ethoxyresorufin O-deethylase, a selective substrate for CYP 1A, may also be catalyzed by CYP 2B.