Purpose: In most tumors, the intratumor environment is acidic. The purpose of this study was to elucidate the effect of acidic extracellular environment on the radiation-induced expression of p53 and related molecular signals.
Methods and materials: Cultured RKO.C human colorectal cancer cells carrying wild-type p53 were used. Cells grown in pH 7.5 medium or pH 6.6 medium were irradiated with gamma-rays, and the expression of p53 and p53 mRNA, as well as the degradation rate of the molecules, was determined. The transcriptional activity for p53 was investigated using cells transfected with a p53 reporter construct. The expression of Mdm2 and the phosphorylation of p53, essential factors for p53 degradation, were also investigated.
Results: The pH 6.6 environment prolonged the radiation-induced expression of p53 and p53 mRNA. The radiation-induced increase in transcriptional activity of p53 lasted longer in pH 6.6 medium than in pH 7.5 medium. The degradation of p53 was delayed at pH 6.6. The radiation-induced expression of Mdm2 was markedly suppressed, whereas the phosphorylation of p53 was markedly increased after irradiation in pH 6.6 medium.
Conclusion: Acidic environment significantly enhances the radiation-induced expression of p53, partly by increasing the formation of p53 and also partly by slowing down the degradation of p53 through inhibiting p53-Mdm2 complex formation. The potential implication of acidic intratumor microenvironment for the response of tumors to radiotherapy remains to be elucidated.