The objective of this study is to investigate the influence of point mutations on the structural stability of coiled coil fragments of the human hair intermediate filament by molecular dynamics simulations and free energy calculations. Mutations in the helix termination motif of human hair keratin gene hHb6 seem to be connected to the hereditary hair dystrophy Monilethrix. The most common mutations reported are Glu413Lys and Glu413Asp, located at the C-terminal end of the coiled coil 2B rod domain of the IF. According to our simulations, significant conformational changes of the side chains at the mutation and neighboring sites occur due to the Glu413Lys mutation. Furthermore, the differences in electrostatic interactions cause a large change in free energy during transformation of Glu413 to Lys calculated by the thermodynamic integration approach. It is speculated that the structural rearrangement necessary to adapt the interactions in the mutated coiled coil leads to changes in the IF assembly or its stability. The second mutation, Glu413Asp, only leads to a small value of the calculated free energy difference that is within the error limits of the simulations. Thus, it has to be concluded that this mutation does not affect the coiled coil stability.