Aberrant auditory processing and atypical planum temporale in developmental stuttering

Neurology. 2004 Nov 9;63(9):1640-6. doi: 10.1212/01.wnl.0000142993.33158.2a.

Abstract

Objective: To learn if people with persistent developmental stuttering and atypical anatomy of their auditory temporal cortex have, when compared to control subjects, changes in fluency induced with delayed auditory feedback (DAF).

Background: DAF improves fluency in many individuals who stutter, and induces dysfluency in some normal people. The planum temporale (PT), a portion of auditory temporal cortex, is anatomically atypical in some adults who stutter and atypical anatomy might induce aberrant function. Thus, the people who demonstrate the paradoxical response to DAF might be those who have atypical anatomy.

Methods: Experimental subjects were adults with developmental stuttering (n = 14) and control subjects (n = 14) matched for age, sex, education, and handedness. Volumetric MRI scans of all subjects were obtained and the PT was measured in the right and left hemispheres. Based on these scans, subjects were classified as typical (leftward PT asymmetry) or atypical (rightward PT asymmetry). Prose passages were read at baseline, with non-altered feedback (NAF), and with DAF, and fluency was measured in these three conditions.

Results: At baseline the adults with developmental stuttering were significantly more dysfluent than controls (p < 0.0005). Controls' fluency did not significantly change with DAF, but DAF improved fluency in adults with developmental stuttering (p < 0.0005). In the stutter group enhanced fluency was associated with atypical (rightward) PT asymmetry, and the presence of typical (leftward) PT asymmetry was not associated with any significant change in fluency. The individuals with atypical PT asymmetry also had more severe stuttering at baseline compared to the experimental subjects with typical PT anatomy.

Conclusions: In adults with persistent developmental stuttering and atypical PT anatomy, fluency is improved with DAF. These experimental subjects who showed improvement had more severe stuttering at baseline. Anomalous PT anatomy may be a neural risk for developmental stuttering in some individuals. Although a number of explanations are tenable, it may be that atypical rightward PT asymmetry may alter speech feedback, and treatment with DAF might allow these people to compensate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Auditory Cortex / pathology*
  • Auditory Perceptual Disorders / pathology*
  • Auditory Perceptual Disorders / physiopathology*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Reading
  • Stuttering / diagnosis
  • Stuttering / pathology*
  • Stuttering / physiopathology*