There have been no therapeutic agents that provide a survival advantage in hormone-refractory prostate cancer. Recently, the Food and Drug Administration approved docetaxel combined with prednisone for the treatment of patients with advanced metastatic prostate cancer, and it does show a survival benefit. Hence, anti-microtubule drugs might be of benefit in chemotherapy of hormone-refractory prostate cancer. We used metastatic hormone-refractory prostate cancer PC-3 cells to investigate potential molecular mechanisms for CIL-102, a semisynthetic alkaloid derivative. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide and sulforhodamine B assays indicated that CIL-102 inhibits cell growth dose-dependently. Immunofluorescence microscopy and in vitro tubulin assembly assays indicated that CIL-102 binds to tubulin and disrupts microtubule organization. Flow cytometry showed that CIL-102 causes cells to accumulate in G(2)/M phase and sub-G(0)/G(1) phase. CIL-102-induced apoptosis was also characterized by immunofluorescence microscopy. Western blotting and kinase assays showed that CIL-102 exposure induced up-regulation of cyclin B1 and p34(cdc2) kinase activity and olomoucine, a p34(cdc2) inhibitor, profoundly reduced the number of cells accumulated in mitotic phase. Moreover, Bcl-2 phosphorylation, Cdc25C phosphorylation, and survivin expression were increased. CIL-102-induced apoptosis was associated with activation of caspase-3, but a noncaspase pathway may also be involved, since benzyloxycarbonyl-VAD-fluoromethyl ketone, a pancaspase inhibitor, only partially inhibited the apoptosis, and apoptosis-inducing factor was translocated from mitochondria to cytosol. We conclude that CIL-102 induces mitotic arrest and apoptosis by binding to tubulin and inhibiting tubulin polymerization. CIL-102 causes mitotic arrest, at least partly, by modulating cyclin-dependent kinases and then apoptosis executed by caspase and noncaspase pathways.