Polymorphisms within three candidate genes for lignin biosynthesis were investigated to identify alleles useful for the improvement of maize digestibility. The allelic diversity of two caffeoyl-CoA 3-O-methyltransferase genes, CCoAOMT2 and CCoAOMT1, as well as that of the aldehyde O-methyltransferase gene, AldOMT, was evaluated for 34 maize lines chosen for their varying degrees of cell wall digestibility. Frequency of nucleotide changes averaged one SNP every 35 bp. Ninety-one indels were identified in non-coding regions and only four in coding regions. Numerous distinct and highly diverse haplotypes were identified at each locus. Numerous sites were in linkage disequilibrium that declined rapidly within a few hundred bases. For F4, an early flint French line with high cell wall digestibility, the CCoAOMT2 first exon presented many non-synonymous polymorphisms. Notably we found an 18-bp indel, which resembled a microsatellite and was associated with cell wall digestibility variation. Additionally, the CCoAOMT2 gene co-localized with a QTL for cell wall digestibility and lignin content. Together, these results suggest that genetic diversity investigated on a broader genetic basis could contribute to the identification of favourable alleles to be used in the molecular breeding of elite maize germplasm.