Chromosomes are highly restricted to specific chromosome territories within the interphase nucleus. The arrangement of chromosome territories is non-random, exhibiting a defined radial distribution as well as a preferential association with specific nuclear compartments, which indicates a functional role for chromosome-territory organization in the regulation of gene expression. In this report, we focus on changes in adipocyte differentiation that are related to a specific chromosomal translocation associated with liposarcoma tumorigenesis, t(12;16). We have examined the relative and radial positioning of the chromosome territories of human chromosomes 12 and 16 during adipocyte differentiation, and detected a close association between the territories of chromosomes 12 and 16 in differentiated adipocytes, an association not observed in preadipocytes. Although further studies are required to elucidate the underlying reasons for the adipocyte-specific translocation of chromosomes 12 and 16, our observations indicate that alteration of relative chromosome positioning might play a key role in the tumorigenesis of human liposarcomas. In addition, these results demonstrate the potential impact of higher order chromatin organization on the epigenetic mechanisms that control gene expression and gene silencing during cell differentiation.