Background: Recent clinical trials have shown that systemic infusion of nesiritide, a recombinant human brain natriuretic peptide (BNP), improves hemodynamic parameters in acutely decompensated hearts. This suggests that BNP exerts a direct cardioprotective effect and might thus be a useful therapeutic agent with which to treat acute myocardial infarction (MI). In the present study, we used BNP-transgenic (BNP-Tg) mice with elevated plasma BNP to determine whether and how BNP contributes to left ventricular remodeling and healing after MI.
Methods and results: We examined the accumulation of neutrophils and the expression and activation of matrix metalloproteinase (MMP)-9 in the ventricles of male BNP-Tg mice and their nontransgenic (non-Tg) littermates during the early phase after acute MI. The numbers of neutrophils infiltrating the infarcted area were significantly increased in BNP-Tg mice 3 days after MI. In addition, both the gene expression and zymographic activity of MMP-9, but not MMP-2, were significantly higher in BNP-Tg than non-Tg mice. Double immunostaining revealed that neutrophils are the main source of the MMP-9, although doxycycline, an MMP inhibitor, had no effect on neutrophil infiltration of the infarcted area in BNP-Tg mice.
Conclusions: These results demonstrate that elevated plasma BNP facilitates neutrophil infiltration of the infarcted area after MI and increases the activity of the MMP-9 they produce. This suggests that BNP plays a key role in the processes of extracellular matrix remodeling and wound-healing during the early phase after acute MI.