The CYP3A genes reside on chromosome 7q21 in a multigene cluster. The enzyme products of CYP3A4 and CYP3A43 are involved in testosterone metabolism. CYP3A4 and CYP3A5 have been associated previously with prostate cancer occurrence and severity. To comprehensively examine the effects of these genes on prostate cancer occurrence and severity, we studied 622 incident prostate cancer cases and 396 controls. Substantial and race-specific linkage disequilibrium was observed between CYP3A4 and CYP3A5 in both races but not between other pairs of loci. We found no association of CYP3A5 genotypes with prostate cancer or disease severity. CYP3A43*3 was associated with family history-positive prostate cancer (age- and race-adjusted odds ratio = 5.86, 95% confidence interval, 1.10-31.16). CYP3A4*1B was associated inversely with the probability of having prostate cancer in Caucasians (age-adjusted odds ratio = 0.54, 95% confidence interval, 0.32-0.94). We also observed significant interactions among these loci associated with prostate cancer occurrence and severity. There were statistically significant differences in haplotype frequencies involving these three genes in high-stage cases (P < 0.05) compared with controls. The observation that CYP3A4 and CYP3A43 were associated with prostate cancer, are not in linkage equilibrium, and are both involved in testosterone metabolism, suggest that both CYP3A4*1B and CYP3A43*3 may influence the probability of having prostate cancer and disease severity.