We report exceptionally low PM noise levels from a microwave oscillator that uses a conventional air-dielectric cavity resonator as a frequency discriminator. Our approach is to increase the discriminator's intrinsic signal-to-noise ratio by use of a high-power carrier signal to interrogate an optimally coupled cavity, while the high-level of the carrier is suppressed before the phase detector. We developed and tested an accurate model of the expected PM noise that indicates, among other things, that a conventional air-dielectric resonator of moderate Q will exhibit less discriminator noise in this approach than do more esoteric and expensive dielectric resonators tuned to a high-order, high-Q mode and driven at the dielectric's optimum