The Transport of Intensity technique is becoming a viable alternative to electron holography for phase retrieval in Transmission Electron Microscopy. However, several issues are still to be clarified in order to ascertain the applicability of the technique; among them, the controversy regarding its geometrical or wave-optical nature, as related to the phase detection limit. We show here that the Transport of Intensity is a wave-optical technique that works in a special regime of small defocus where the image intensity is linear with the defocus parameter. By a simple analytical example we show that the Transport of Intensity correctly reconstructs the electron optical phase shift even when the phase is smaller than pi, a value defining the boundary between the geometrical and wave approaches. Another example is given, the reconstruction of a phase jump, accompanied with experimental support showing that phase retrieval by Electron Holography and Transport of Intensity techniques yields results in good agreement.