The diversity of freshwater bacterioplankton communities has not been extensively studied despite their key role in foodwebs and the cycling of carbon and associated major elements. In order to explore and characterize the composition of bacterioplankton associated with cyanobacterial blooms, large 16S rRNA clone libraries from four lakes experiencing such blooms were analysed. The four libraries contained 1461 clones, of which 559 were prokaryotic sequences of non-cyanobacterial origin. These clones were classified into 158 operational taxonomic units affiliated mainly with bacterial divisions commonly found in freshwater systems, e.g. Proteobacteria, Bacteriodetes, Actinobacteria, Verrucomicrobia and Planctomycetes. Richness and evenness of non-cyanobacterial clones were similar to other clone libraries obtained for freshwater bacterioplankton, suggesting that bacterial communities accompanying cyanobacterial blooms are as diverse as non-bloom communities. Many of the identified operational taxonomic units grouped with known freshwater clusters but the libraries also contained novel clusters of bacterial sequences that may be characteristic for cyanobacterial blooms. About 25% of the operational taxonomic units were detected in more than one lake. Even so, 16S rRNA heterogeneity analysis demonstrated large differences in community composition between lakes regardless of their similar characteristics and close proximity. Hence even the similar environmental conditions created by different cyanobacterial blooms may foster very dissimilar bacterial communities, which could indicate that the genetic diversity in lake bacteria have been underestimated in the past.