In muscle and adipocytes, glucose transport is regulated by the translocation of insulin regulatable glucose transporters (GLUT4) between an intracellular compartment and the cell surface. In these studies we have characterized the cellular compartments containing GLUT4 in rat skeletal muscle. Immunocytochemical studies showed that in unstimulated muscle, GLUT4 was not present in surface membranes. Tubulo-vesicular structures clustered in the trans Golgi reticulum were enriched in GLUT4. GLUT4 underwent translocation to the sarcolemma in response to combined stimulation with insulin and exercise. Using immunoisolation, the intracellular GLUT4 vesicles (IRGTV) were purified 300-fold over the cell homogenate. IRGTV from unstimulated muscle were not enriched in markers specific for the sarcolemma, transverse tubules, sarcoplasmic reticulum or mitochondria; this was confirmed using gel filtration chromatography. Insulin resulted in a 40% decrease in GLUT4 levels in IRGTV confirming that this represents the intracellular compartment of GLUT4. GLUT4 is a major component of the IRGTV, constituting at least 5% of total vesicle protein. A subset of polypeptides are also markedly enriched in the muscle IRGTV. In conclusion, these data suggest that translocation of GLUT4 from intracellular tubulo-vesicular structures is the major mechanism by which insulin and exercise regulate muscle glucose transport.