DNA polymerase beta and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair

J Biol Chem. 2005 Feb 4;280(5):3665-74. doi: 10.1074/jbc.M412922200. Epub 2004 Nov 22.

Abstract

DNA polymerase beta (pol beta) and flap endonuclease 1 (FEN1) are key players in pol beta-mediated long-patch base excision repair (LP-BER). It was proposed that this type of LP-BER is accomplished through FEN1 removal of a 2- to 11-nucleotide flap created by pol beta strand displacement DNA synthesis. To understand how these enzymes might cooperate during LP-BER, we characterized purified human pol beta DNA synthesis by utilizing various BER intermediates, including single-nucleotide-gapped DNA, nicked DNA, and nicked DNA with various lengths of flaps all with a 5'-terminal tetrahydrofuran (THF) residue. We observed that nicked DNA and nicked-THF flap DNA were poor substrates for pol beta-mediated DNA synthesis; yet, DNA synthesis was strongly stimulated by purified human FEN1. FEN1 did not improve pol beta substrate binding. FEN1 cleavage activity was required for the stimulation, suggesting that FEN1 removed a barrier to pol beta DNA synthesis. In addition, FEN1 cleavage on both nicked and nicked-THF flap DNA resulted in a one-nucleotide gapped DNA molecule that was an ideal substrate for pol beta. This study demonstrates that pol beta cooperates with FEN1 to remove DNA damage via a "Hit and Run" mechanism, involving alternating short gap production by FEN1 and gap filling by pol beta, rather than through coordinated formation and removal of a strand-displaced flap.

MeSH terms

  • DNA / biosynthesis
  • DNA Polymerase beta / genetics
  • DNA Polymerase beta / metabolism*
  • DNA Repair / physiology*
  • Electrophoretic Mobility Shift Assay
  • Flap Endonucleases / genetics
  • Flap Endonucleases / metabolism*
  • Humans
  • Substrate Specificity

Substances

  • DNA
  • DNA Polymerase beta
  • Flap Endonucleases