The aim of this study was to investigate the effect of alginate microparticles coated with three kinds of chitosans of different molecular weights on the survival of Lactobacillus bulgaricus KFRI 673 in simulated gastric (SGJ) and intestinal juices (SIJ) and on their stability during storage at 4 and 22 degrees C. L. bulgaricus KFRI 673 loaded in alginate microparticles was prepared by spraying the mixture of sodium alginate and cell culture into the calcium chloride solution using an air-atomizing device. When L. bulgaricus KFRI 673 was exposed to SGJ of pH 2.0 for 60 min, none of the microorganism survived. Contrary to this result, microbiological analysis indicated that microencapsulation in alginate microparticles improved the survival of acid-sensitive L. bulgaricus KFRI 673 in SGJ and that high molecular weight chitosan coating resulted in the highest survival in SGJ. To study storage stability of free and microencapsulated cells, in vitro studies were conducted at 4 and 22 degrees C during a 4 week period. Both free and microencapsulated cells showed similar stabilities during 4 weeks of storage at 4 degrees C. However, the stability of Lactobacillus at 22 degrees C was appreciably improved when loaded in high molecular weight chitosan-coated alginate microparticles. In conclusion, microencapsulation of lactic acid bacteria with alginate and chitosan coating offers an effective way of delivering viable bacterial cells to the colon and maintaining their survival during refrigerated storage.