LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms

Phys Med Biol. 2004 Oct 21;49(20):4731-44. doi: 10.1088/0031-9155/49/20/005.

Abstract

Iterative statistical reconstruction methods are becoming the standard in positron emission tomography (PET). Conventional maximum-likelihood expectation-maximization (MLEM) and ordered-subsets (OSEM) algorithms act on data which have been pre-processed into corrected, evenly-spaced histograms; however, such pre-processing corrupts the Poisson statistics. Recent advances have incorporated attenuation, scatter and randoms compensation into the iterative reconstruction. The objective of this work was to incorporate the remaining pre-processing steps, including arc correction, to reconstruct directly from raw unevenly-spaced line-of-response (LOR) histograms. This exactly preserves Poisson statistics and full spatial information in a manner closely related to listmode ML, making full use of the ML statistical model. The LOR-OSEM algorithm was implemented using a rotation-based projector which maps directly to the unevenly-spaced LOR grid. Simulation and phantom experiments were performed to characterize resolution, contrast and noise properties for 2D PET. LOR-OSEM provided a beneficial noise-resolution tradeoff, outperforming AW-OSEM by about the same margin that AW-OSEM outperformed pre-corrected OSEM. The relationship between LOR-ML and listmode ML algorithms was explored, and implementation differences are discussed. LOR-OSEM is a viable alternative to AW-OSEM for histogram-based reconstruction with improved spatial resolution and noise properties.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Algorithms*
  • Brain / anatomy & histology*
  • Computer Simulation
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Models, Biological
  • Models, Statistical
  • Numerical Analysis, Computer-Assisted*
  • Phantoms, Imaging
  • Positron-Emission Tomography / instrumentation
  • Positron-Emission Tomography / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Stochastic Processes