Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism

J Hum Evol. 2004 Dec;47(6):453-78. doi: 10.1016/j.jhevol.2004.08.007.

Abstract

Size and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000 (Homo ergaster, 1.5-1.8 million year ago) compared to models of adult human males and females, to estimate the required muscle power during bipedal walking, and to compare this with those in modern humans. Skeletal measurements were carried out on a cast of KNM-WT 15000, but for AL 288-1 were taken from the literature. Muscle attachments were applied to the models based on their position relative to the bone in modern humans. Joint motions and moments from experiments on human walking were input into the models to calculate muscle stress and power. The models were tested in erect walking and 'bent-hip bent-knee' gait. Calculated muscle forces were verified against EMG activity phases from experimental data, with reference to reasonable activation/force delays. Calculated muscle powers are reasonably comparable to experimentally derived metabolic values from the literature, given likely values for muscle efficiency. The results show that: 1) if evaluated by the power expenditure per unit of mass (W/kg) in walking, AL 288-1 and KNM-WT 15000 would need similar power to modern humans; however, 2) with distance-specific parameters as the criteria, AL 288-1 would require to expend relatively more muscle power (W/kg.m(-1)) in comparison to modern humans. The results imply that in the evolution of bipedalism, body proportions, for example those of KNM-WT 15000, may have evolved to obtain an effective application of muscle power to bipedal walking over a long distance, or at high speed.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Animals
  • Anthropometry
  • Biological Evolution
  • Biomechanical Phenomena
  • Computer Simulation
  • Female
  • Hominidae / anatomy & histology*
  • Hominidae / physiology
  • Humans
  • Male
  • Models, Biological*
  • Musculoskeletal System / anatomy & histology*
  • Walking / physiology*