Assessment of thiopurine methyltransferase and metabolite formation during thiopurine therapy: results from a large Swedish patient population

Ther Drug Monit. 2004 Dec;26(6):673-8. doi: 10.1097/00007691-200412000-00014.

Abstract

This study examined thiopurine methyltransferase (TPMT) and the relationship to thioguanine nucleotides (TGN) and methylthioinosine monophosphate (meTIMP) in a large Swedish patient population. The current hypothesis is that the cytotoxic effects of thiopurine drugs are mediated by the incorporation of TGN into DNA. The authors assayed the TPMT activity in red blood cells from 1151 subjects and the concentrations of TGN (n = 602) and meTIMP (n = 593) from patients treated with thiopurine drugs. The TPMT frequency distribution in both adults and children showed some differences from what had been found in unselected general populations. Children had lower median TPMT activity than adults (12.0 versus 12.9 U/mL RBC; P < 0.001). Relative differences in both TGN formation [medians: normal TPMT, 1.3; intermediate TPMT, 3.3; low TPMT, 47.9 pmol/8 x 10(8) RBC per mg azathioprine (AZA); P < 0.001] and meTIMP formation (medians: normal TPMT, 13; intermediate TPMT, 7.3; low TPMT, 0 pmol/8 x 10(8) RBC per mg AZA; P = 0.001) per 1 mg administered drug were noted among the 3 TPMT activity groups. Women formed higher concentrations of both TGN (1.5 versus 1.3 pmol/8 x 10(8) RBC per mg AZA; P = 0.01) and meTIMP (14.4 versus 10.7 pmol/8 x 10(8) RBC per mg AZA; P = 0.01) than men did. There was a significant correlation between the AZA dose and the meTIMP concentrations (r = 0.45; P < 0.001). Furthermore, dose alterations made in subjects with normal TPMT (n = 84) and intermediate TPMT (n = 22) activity resulted in more pronounced increases in TGN concentrations (170 versus 30 pmol/8 x 10(8) RBC; P < 0.001) in intermediate TPMT activity, whereas in normal TPMT activity changes in meTIMP concentrations were more pronounced (1.3 versus 0 nmol/8 x 10(8) RBC; P < 0.001). In normal TPMT activity both metabolites increased in a dose-dependent fashion, whereas in intermediate TPMT activity only TGN concentrations increased. The results of this study demonstrate the dynamic nature of thiopurine metabolism and its importance for thiopurine dosing.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Azathioprine / blood*
  • Child
  • Child, Preschool
  • Databases, Factual
  • Dose-Response Relationship, Drug
  • Drug Monitoring / methods
  • Female
  • Humans
  • Infant
  • Male
  • Methyltransferases / blood*
  • Methyltransferases / metabolism
  • Middle Aged
  • Patient Selection
  • Sweden

Substances

  • Methyltransferases
  • thiopurine methyltransferase
  • Azathioprine