Modulation of sarcoplasmic reticulum function by Na+/K+ pump inhibitors with different toxicity: digoxin and PST2744 [(E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride]

J Pharmacol Exp Ther. 2005 Apr;313(1):207-15. doi: 10.1124/jpet.104.077933. Epub 2004 Dec 2.

Abstract

Objective: To gain some insight on the lesser arrhythmogenic properties of PST2744 [(E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride] compared with digoxin, we compared modulation of intracellular Ca2+ dynamics by the two agents.

Methods: SERCA (sarcoplasmic reticulum Ca2+-ATPase) activity and Ca2+ leak rate were measured in sarcoplasmic reticulum (SR) vesicles from guinea pig ventricles. Membrane current, intracellular Ca2+, and twitch amplitude were evaluated in guinea pig ventricular myocytes with or without blockade of the Na+/Ca2+ exchanger.

Results: In SR vesicles, PST2744 (30-300 nM), but not digoxin, increased SERCA activity; digoxin only (> or =0.1 nM) increased SR Ca2+ leak. In myocytes with blocked Na+/Ca2+ exchanger, Ca2+ reloading of caffeine-depleted SR was enhanced by PST2744 and slightly inhibited by digoxin. In myocytes with functioning Na+/Ca2+ exchanger, both agents increased diastolic Ca2+, SR Ca2+ content, the gain of Ca2+-induced Ca2+ release, the rate of cytosolic Ca2+ decay, twitch amplitude, and relaxation rate. Consistent with the observations in SR vesicles, the effects on SR Ca2+ content and Ca2+ decay rate were significantly larger for PST2744 than for digoxin.

Conclusions: In isolated SR vesicles, PST2744 and digoxin directly affected SR function in opposite ways; this could be reproduced in myocytes during Na+/Ca2+ exchanger blockade. Under physiological conditions (functioning Na+/Ca2+ exchanger), the two agents affected Ca2+ dynamics in the same direction, as expected by their Na+/K+ pump inhibition; however, differential SR modulation was still expressed by quantitative differences. Thus, the more favorable inotropy-to-toxicity ratio previously described for PST2744 appears to be associated with direct SERCA stimulation and/or lack of enhancement of Ca2+ leak.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium-Transporting ATPases / metabolism
  • Digoxin / pharmacology*
  • Digoxin / toxicity
  • Electrophysiology
  • Enzyme Inhibitors / pharmacology*
  • Enzyme Inhibitors / toxicity
  • Etiocholanolone / analogs & derivatives*
  • Etiocholanolone / pharmacology*
  • Etiocholanolone / toxicity
  • Guinea Pigs
  • Heart Ventricles / cytology
  • Heart Ventricles / drug effects
  • Heart Ventricles / metabolism
  • In Vitro Techniques
  • Membrane Potentials / drug effects
  • Myocardial Contraction / drug effects
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / enzymology*
  • Sarcoplasmic Reticulum / drug effects
  • Sarcoplasmic Reticulum / metabolism*
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Sodium-Potassium-Exchanging ATPase / antagonists & inhibitors*

Substances

  • Enzyme Inhibitors
  • Digoxin
  • Etiocholanolone
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Calcium-Transporting ATPases
  • Sodium-Potassium-Exchanging ATPase
  • Calcium
  • Istaroxime