Objective: To gain some insight on the lesser arrhythmogenic properties of PST2744 [(E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride] compared with digoxin, we compared modulation of intracellular Ca2+ dynamics by the two agents.
Methods: SERCA (sarcoplasmic reticulum Ca2+-ATPase) activity and Ca2+ leak rate were measured in sarcoplasmic reticulum (SR) vesicles from guinea pig ventricles. Membrane current, intracellular Ca2+, and twitch amplitude were evaluated in guinea pig ventricular myocytes with or without blockade of the Na+/Ca2+ exchanger.
Results: In SR vesicles, PST2744 (30-300 nM), but not digoxin, increased SERCA activity; digoxin only (> or =0.1 nM) increased SR Ca2+ leak. In myocytes with blocked Na+/Ca2+ exchanger, Ca2+ reloading of caffeine-depleted SR was enhanced by PST2744 and slightly inhibited by digoxin. In myocytes with functioning Na+/Ca2+ exchanger, both agents increased diastolic Ca2+, SR Ca2+ content, the gain of Ca2+-induced Ca2+ release, the rate of cytosolic Ca2+ decay, twitch amplitude, and relaxation rate. Consistent with the observations in SR vesicles, the effects on SR Ca2+ content and Ca2+ decay rate were significantly larger for PST2744 than for digoxin.
Conclusions: In isolated SR vesicles, PST2744 and digoxin directly affected SR function in opposite ways; this could be reproduced in myocytes during Na+/Ca2+ exchanger blockade. Under physiological conditions (functioning Na+/Ca2+ exchanger), the two agents affected Ca2+ dynamics in the same direction, as expected by their Na+/K+ pump inhibition; however, differential SR modulation was still expressed by quantitative differences. Thus, the more favorable inotropy-to-toxicity ratio previously described for PST2744 appears to be associated with direct SERCA stimulation and/or lack of enhancement of Ca2+ leak.