Objective: Previous work from our laboratory has demonstrated that frog urotensin-II (UII), at a high concentration, inhibits glucose-induced insulin release in the rat pancreas. We have investigated the effect of rat UII and two structural analogs on insulin secretion and searched for the presence of UII-immunoreactivity in rat pancreatic extracts.
Methods: The study was performed in the perfused rat pancreas. UII as well as its analogs were synthesized by solid phase methodology. Pancreatic extracts were analyzed for UII by reversed-phase HPLC combined with a sensitive UII RIA.
Results: Infusion of synthetic rat UII inhibited glucose-induced insulin release in a dose-dependent manner (IC(50): 0.12 nmol/l). UII (1 nmol/l) also inhibited the insulin responses induced by carbachol, glucagon-like peptide-1, and a calcium channel agonist (BAY K 8644). The inhibitory effect of UII was mimicked by the potent G protein-coupled receptor (GPR14) agonist [3-iodo-Tyr(6)]UII(4-11). In contrast, [Ala(8)]UII(4-11), a UII analog devoid of contractile activity on rat aortic rings, did not affect glucose-induced insulin secretion. Analysis of rat pancreatic extracts revealed the presence of an immunoreactive peptide exhibiting the same retention time as synthetic rat UII.
Conclusions: Our results demonstrate that UII is a potent insulinostatic peptide. The observation that UII is actually present in the pancreas suggests that this peptide may play a physiological role in the control of insulin secretion. Concerning the two UII analogs tested, only [3-iodo-Tyr(6)]UII(4-11), reportedly possessing GPR14-mediated contractile activity, mimics the insulinostatic effect of UII. This finding would support the view that UII acts on the pancreatic beta cell through the GPR14 receptor.