Diagnostic anatomic pathologists play an important role in the care of patients through their careful evaluation of morphological features in routinely prepared histological sections stained with Hematoxylin and Eosin. Morphological assessment of tissue sections, backed by over one hundred years of experience is powerful and allows for the accurate classification and diagnosis of the majority of disease states within pathologically altered tissues. However, the appearance of cells and their architectural arrangement within a morphologically complex tissue represents only a fraction of the information, which is contained within a histological section. These tissues also contain all of the cellular proteins and expressed genes, which help to ultimately determine the biological behavior of cells, as well as provide clues to the origins and pathogenesis of disease states. Technical and theoretical advances in our understanding of cellular biology have provided pathologists with powerful tools to probe beyond pure morphology into the abnormalities in both protein and gene expression that underlie human disease. These tools, which include immunohistochemistry and in situ hybridization, are playing an increasingly important role in diagnostic pathology, as well as in translational research. This review will focus on the emerging role of in situ hybridization within clinical and research laboratories, and will highlight a number of technical advances that have expanded the application of this technology.