PVC membrane potentiometric sensor based on 5-pyridino-2,8-dithia[9](2,9)-1,10-phenanthroline-phane for selective determination of neodymium(III)

Anal Chem. 2005 Jan 1;77(1):276-83. doi: 10.1021/ac049349l.

Abstract

Spectrofluorometric studies on the binding properties of 5-pyridino-2,8-dithia[9](2,9)-1,10-phenanthrolinephane (L) toward La3+, Sm3+, Gd3+, Yb3+, and Nd3+ in methanol solution revealed the occurrence of both 1:1 and 2:1 (ligand/metal) complexation with a stability order of Nd3+ > Yb3+ > Gd3+ > Sm3+ > La3+. Consequently, L was used as a suitable neutral ionophore for the preparation of a novel polymeric membrane-selective electrode for Nd3+ ion. The electrode exhibited a Nernstian response over a wide concentration range (1.0 x 10(-6)-1.0 x 10(-2) M) with a low limit of detection of 7.9 x 10(-7) M. The electrode possesses a fast response time of <5 s and can be used for at least 9 weeks without observing any considerable deviation. The proposed electrode revealed a very good selectivity for Nd3+ over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, including members of the lanthanide family other than Nd3+. The potentiometric response of the electrode is independent of the pH of test solution in the pH range 4.0-6.5. The proposed electrode was successfully applied to the recovery of Nd3+ ion from tap water samples and, also, as an indicator electrode, in potentiometric titration of neodymium(III) ions.