Discectomy, decompression, and fusion are traditionally used to manage cervical disc disease accompanied by neural element compression that is refractory to conservative management. Concerns regarding stress at levels adjacent to fusion and possible adjacent-level degeneration as well as a desire to maintain a more normal biomechanical environment have led to investigation of cervical disc replacement as an alternative to fusion procedures. Cervical disc prostheses currently under investigation are constructed of predominantly metal-on-polyethylene or metal-on-metal bearing surfaces, and use roughened titanium surfaces and osteoconductive coatings to facilitate fixation. The unique anatomy and biomechanics of the cervical spine must be considered when extrapolating from the experience of appendicular arthroplasty and lumbar disc replacement.