Variational optimization of effective atom centered potentials for molecular properties

J Chem Phys. 2005 Jan 1;122(1):14113. doi: 10.1063/1.1829051.

Abstract

In plane wave based electronic structure calculations the interaction of core and valence electrons is usually represented by atomic effective core potentials. They are constructed in such a way that the shape of the atomic valence orbitals outside a certain core radius is reproduced correctly with respect to the corresponding all-electron calculations. Here we present a method which, in conjunction with density functional perturbation theory, allows to optimize effective core potentials in order to reproduce ground-state molecular properties from arbitrarily accurate reference calculations within standard density functional calculations. We demonstrate the wide range of possible applications in theoretical chemistry of such optimized effective core potentials (OECPs) by means of two examples. We first use OECPs to tackle the link atom problem in quantum mechanics/molecular mechanics (QM/MM) schemes proposing a fully automatized procedure for the design of link OECPs, which are designed in such a way that they minimally perturb the electronic structure in the QM region. In the second application, we use OECPs in two sample molecules (water and acetic acid) such as to reproduce electronic densities and derived molecular properties of hybrid (B3LYP) quality within general gradient approximated (BLYP) density functional calculations.