CNS activity is generally coupled to the vigilance state, being primarily active during wakefulness and primarily inactive during deep sleep. During periods of high neuronal activity, a significant volume of oxygen is used to maintain neuronal membrane potentials, which subsequently produces cytotoxic reactive oxygen species (ROS). Glutathione, a major endogenous antioxidant, is an important factor protecting against ROS-mediated neuronal degeneration. Glutathione has also been proposed to be a sleep-promoting substance, yet the relationship between sleep and cerebral oxidation remains unclear. Here we report that i.c.v. infusion of the organic peroxide t-butyl-hydroperoxide at a concentration below that triggering neurodegeneration (0.1 micromol/100 microl/10 h) promotes sleep in rats. Also, microinjection (2 nmol, 2 microl) or microdialysis (100 microM, 20 min) of t-butyl-hydroperoxide into the preoptic/anterior hypothalamus (POAH) induces the release of the sleep-inducing neuromodulators, nitric oxide and adenosine, without causing neurodegeneration. Nitric oxide and adenosine release was inhibited by co-dialysis of the N-methyl-D-aspartate receptor antagonist, d(-)-2-amino-5-phosphonopentanoic acid (D-AP5; 1 mM), suggesting that glutamate-induced neuronal excitation mediates the peroxide-induced release of nitric oxide and adenosine. Indeed, Ca2+ release from mitochondria and delayed-onset Ca2+ influx via N-methyl-D-aspartate receptors was visualized during peroxide exposure using Ca2+ indicator proteins (YC-2.1 and mitochondrial-targeted Pericam) expressed in organotypic cultures of the POAH. In the in vitro models, t-butyl-hydroperoxide (50 microM) causes dendritic swelling followed by the intracellular Ca2+ mobilization, and D-AP5 (100 microM) or glutathione (500 microM) inhibited t-butyl-hydroperoxide-induced intracellular Ca2+ mobilization and protected POAH neurons from oxidative stress. These data suggest that low-level subcortical oxidation under the control of an antioxidant system may trigger sleep via the Ca(2+)-dependent release of sleep-inducing neuromodulators in the POAH, and thus we propose that a moderate increase of ROS during wakefulness in the neuronal circuits regulating sleep may be an initial trigger in sleep induction.