Vaccinia virus encodes a multisubunit DNA-dependent RNA polymerase (EC 2.7.7.6) that is packaged in the infectious virus particle. This polymerase was found to contain a submolar polypeptide of approximately 85 kDa in addition to the core subunits, which consist of two larger and several smaller polypeptides. The polymerase containing the 85-kDa polypeptide was separated from the core polymerase by column chromatography. Although the core polymerase actively transcribed heterologous single-stranded DNA, only the form with the associated 85-kDa polypeptide could act in conjunction with an early stage-specific factor to transcribe double-stranded DNA containing a vaccinia virus early promoter. Peptide sequencing established that the RNA polymerase-associated 85-kDa protein was derived from the vaccinia virus H4L open reading frame, which encodes a 94-kDa polypeptide that we named RAP94. RAP94 is not closely related to prokaryotic sigma 70 or eukaryotic RAP30 RNA polymerase-binding proteins, although there are short regions of sequence similarity. The specific association of RAP94 with viral RNA polymerase was corroborated with antibody raised to a recombinant fusion protein. Unlike the previously defined subunits of vaccinia virus RNA polymerase, RAP94 is synthesized exclusively late in infection, and synthesis could be prevented by a DNA replication inhibitor. The role of RAP94 in mediating specific transcription was demonstrated by using an extract from cells in which the H4L open reading frame had been transiently expressed.