Rationale: There is currently no optimal treatment or effective drug for severe acute respiratory syndrome (SARS), because the immunopathologic mechanism is poorly understood.
Objectives: To explore the immune mechanism underlying the pathogenesis of SARS, we studied the expression profile of cytokines/chemokines in the blood and the immunopathology of the lung and lymphoid tissues.
Methods: Fourteen cytokines/chemokines in the blood of 23 patients with SARS were dynamically screened, using a bead-based multiassay system. Reverse transcription-polymerase chain reaction was performed to amplify mRNA. Histopathology of the lung and lymphoid tissues at autopsy was examined, using methods of immunohistochemistry and double immunofluorescence staining.
Main results: Interferon-inducible protein-10 (IP-10) was markedly elevated in the blood during the early stage of SARS, and remained at a high level until convalescence. Moreover, IP-10 was highly expressed in both lung and lymphoid tissues, where monocyte-macrophage infiltration and depletion of lymphocytes were observed. The levels of interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 were concomitantly increased in the blood of the patients with superinfection, and the mRNAs for these cytokines were also increased in lung tissues.
Conclusions: Induction of IP-10 is a critical event in the initiation of immune-mediated acute lung injury and lymphocyte apoptosis during the development of SARS. Superinfection after the immune injury is the main cause of death. The prompt elevation of interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 is a sign of superinfection, indicating a high risk of death.