We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism(s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H(2)O(2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.