Long-term hyperglycemia, a major characteristic of the diabetic state, contributes to the deterioration of the beta cell function, a concept known as beta cell glucotoxicity. We used the MIN6 beta cell line and isolated rat islets to clarify the signaling mechanism(s) used by glucose to activate cAMP-responsive element binding protein (CREB), a transcription factor crucial for beta cell biology, and to evaluate the possible downregulation of this mechanism mediated by long-term hyperglycemia. We report that glucose (10 mM) induces an increase in cytosolic calcium concentration that leads to cAMP-induced protein kinase A (PKA) activation, promoting nuclear translocation of activated ERK1/2. The observation that glucose-induced CREB phosphorylation was totally inhibited by the PKA inhibitor H89 (2 microM) and reduced by 50% with the ERK1/2 inhibitor PD98059 (20 microM) indicates that ERK1/2, located downstream of PKA, cooperates with PKA and is responsible for half of the PKA-mediated CREB phosphorylation elicited by glucose in MIN6 beta cells. We also found that exposure of mu cells for 24 h to high glucose (25 mM) induced a 70% decrease in cellular ERK1/2 and a 50% decrease in CREB content. In high-glucose-treated, ERK1/2- and CREB-downregulated beta cells, there was a loss of glucose (10 mM, 5 min)-stimulated ERK1/2 and CREB phosphorylation that was associated with nuclear apoptotic characteristics. Since we have shown that activation of ERK1/2 is crucial for CREB phosphorylation, loss of the ERK1/2-CREB signaling pathway in beta cells due to long-term hyperglycemia is likely to exacerbate beta cell failure in diabetic states by affecting physiologically relevant gene expression and by inducing apoptosis.