Insulin induces a profound increase in glucose uptake in 3T3-L1 adipocytes through the activity of the glucose transporter-4 (GLUT4). Apart from GLUT4 translocation toward the plasma membrane, there is also an insulin-induced p38 MAPK-dependent step involved in the regulation of glucose uptake. Consequently, treatment with the p38 MAPK inhibitor SB203580 reduces insulin-induced glucose uptake by approximately 30%. Pretreatment with SB203580 does not alter the apparent K(m) of GLUT4-mediated glucose uptake but reduces the maximum velocity by approximately 30%. Insulin-induced GLUT4 translocation and exposure of the transporter to the extracellular environment was not altered by pretreatment with SB203580, as evidenced by a lack of effect of the inhibitor on the amount of GLUT4 present in the plasma membrane, as assessed by subcellular fractionation, the amount of GLUT4 that is able to undergo biotinylation on intact adipocytes and the level of extracellular exposure of an ectopically expressed GLUT-green fluorescence protein construct with a hemagglutinin tag in its first extracellular loop. In contrast, labeling of GLUT4 after insulin stimulation by a membrane-impermeable, mannose moiety-containing, photoaffinity-labeling agent [2-N-4(1-azido-2,2,2-trifluoroethyl)benzoyl-1,3-bis(d-mannose-4-yloxy)-2-propylamine] that binds to the extracellular glucose acceptor domain was markedly reduced by SB203580, although photolabeling with this compound in the absence of insulin was unaffected by SB203580. These data suggest that SB203580 affects glucose turnover by the insulin-responsive GLUT4 transporter in 3T3-L1 adipocytes.