Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was evaluated for both qualitative and quantitative analysis of insulin entrapped within poly(D,L-lactic-co-glycolic acid) nanoparticles. Quantitation was performed by adding an internal standard (arg-insulin) to defined and unknown sample solutions, in order to reduce point-to-point and sample-to-sample variability. The ratio of the peak height of insulin to the peak height of arg-insulin was plotted against the insulin concentration. In this way, an excellent linear relationship was found (R2 > 0.99). This method of quantitation was compared with classical UV spectroscopy and reverse-phase high-performance liquid chromatography measurements. All methods provided close final drug loading values for the insulin-loaded nanoparticle batches tested. Additionally, with respect to molecular stability, covalent insulin dimers were found only at trace levels in those nanoparticles. Compared with other methods, MALDI-TOF MS is a valuable tool for the characterization of proteins from nanoparticles, because no extensive extraction and complex sampling procedures are required.
Copyright 2005 Wiley-Liss, Inc. and the American Pharmacists Association.