During acoustic communication among human beings, emotional information can be expressed both by the propositional content of verbal utterances and by the modulation of speech melody (affective prosody). It is well established that linguistic processing is bound predominantly to the left hemisphere of the brain. By contrast, the encoding of emotional intonation has been assumed to depend specifically upon right-sided cerebral structures. However, prior clinical and functional imaging studies yielded discrepant data with respect to interhemispheric lateralization and intrahemispheric localization of brain regions contributing to processing of affective prosody. In order to delineate the cerebral network engaged in the perception of emotional tone, functional magnetic resonance imaging (fMRI) was performed during recognition of prosodic expressions of five different basic emotions (happy, sad, angry, fearful, and disgusted) and during phonetic monitoring of the same stimuli. As compared to baseline at rest, both tasks yielded widespread bilateral hemodynamic responses within frontal, temporal, and parietal areas, the thalamus, and the cerebellum. A comparison of the respective activation maps, however, revealed comprehension of affective prosody to be bound to a distinct right-hemisphere pattern of activation, encompassing posterior superior temporal sulcus (Brodmann Area [BA] 22), dorsolateral (BA 44/45), and orbitobasal (BA 47) frontal areas. Activation within left-sided speech areas, in contrast, was observed during the phonetic task. These findings indicate that partially distinct cerebral networks subserve processing of phonetic and intonational information during speech perception.