Background: The contamination of salvaged wound blood with activated leukocytes has been suspected to play a role in leukocyte-mediated tissue injury by increased adhesion to the endothelium. To verify this hypothesis, the authors performed a clinical study to examine the effects of blood salvage on leukocyte-endothelial interactions.
Methods: Expression of L-selectin, CD18, and CD11b and leukocyte adhesion to activated endothelium from human umbilical veins were measured in 25 patients undergoing major orthopedic surgery. Adhesion of fluorescently labeled leukocytes was examined in a flow chamber at shear rates of 50-1,600 s. Comparisons were made between samples from venous blood and from processed salvaged wound blood (SWB).
Results: At 30% hematocrit, SWB contained 2,162 +/- 147 leukocytes/microl. In comparison with venous blood, CD11b was up-regulated in SWB 1.3- to 3.6-fold on monocytes and neutrophils, whereas L-selectin and CD18 decreased on monocytes by 53% and 15%, respectively (P < 0.05). Despite up-regulation of CD11b, firm adhesion was significantly reduced by 74-76% in SWB. Rolling fractions and rolling velocities were significantly higher in SWB, and their relation to shear rate was markedly altered (P < 0.01). In addition, adherent leukocytes from SWB were significantly less resistant to increments of shear rate than leukocytes from venous blood (P < 0.01).
Conclusions: Despite up-regulated CD11b, integrin-mediated adhesion is markedly impaired in salvaged blood. Therefore, the effect of blood salvage cannot be predicted from cell surface expression but rather from functional assays. The former hypothesis, that leukocytes from SWB aggravate leukocyte-mediated tissue injury by increased adhesion, may not be as great a concern as previously suggested.